Digital signal processing: Difference between revisions

m
no edit summary
mNo edit summary
Line 86:
A common component for the modular synthesist is a CV quantiser - a module that maps a continuously varying CV into a voltage corresponding to a note on a predefined scale for pitch generation.
 
If we assume a normal Equal Temperament Scale of 5 octaves between 0 and 5 V (for example), this represents 12 half tones per octave (or per volt). This is 60 steps which can be represented in 6 bits (2<sup>6</sup> = 64 steps). Many cost-effective microcontrollers[[microcontroller]]s come with one or more ADC pins that range from 8- to 12-bit resolution, which makes them more than suitable for the purpose. A CV quantiser is either going to be free-running (i.e. quasi-continuous) or triggered by a clock or event from another module. It is not, even when free-running, going to be sampling at audio frequencies. It is actually going to be sampling at very low frequencies, and there will be little requirement for anti-aliasing because the clock rate of the controller is likely to far, far exceed the rates needed within the quantiser itself. This should make the selection of a core component very cheap and easy to build around. The main design challenges are more likely to be the calibration of the DAC output and the writing of the internal software.
 
Of course, having seen how easy it is to design a simple quantiser, it should be possible to see that, given 10- or 12-bits to play with, a more complex quantiser, supporting portamento and microtonal scale mappings, could be built without incurring any significant additional hardware cost.
0

edits