Regulatory issues: Difference between revisions

add more info
(minor edits)
(add more info)
Line 1:
'''Very few consumers of music gear realize the complex, difficult, ever-changing nature of manufacture of music electronics. Simply putting a circuit-board in a box and offering it for sale is not a viable possibility in the 21st century, due to a lengthy list of factors evolving from government regulations. Not only do nearly all industrialized countries have regulations and court-case precedent covering electrical safety, the issues of RFI (radio-frequency interference) and EMC (electromagnetic compatibility) must be considered. EMC is a major issue for any electronic device sold with a microprocessor inside. And the enactment of ROHS laws by the European Union in 20052006 severely restricts the types of materials that a manufacturer can use in an electronic product.'''
 
 
Line 33:
To sell the same product in Europe, IEC 61000 testing is required to certify it for a CE mark. The CE mark simply states that the product has been tested, meets the EU standard, and is legally permitted to be sold in Europe. Needless to say, the IEC test is similar to the FCC Part 15 test, but different enough to make separate testing unavoidable. This typically costs $15,000-$20,000 for each separate product. The regulation also says that ESD (electrostatic discharge) testing is mandatory, to assure the product will not be damaged by static discharge from the user.
 
Searching online for information about EMC often leads to the websites of the test labs. Wherein they advertise and brag about their capabilities, but provide very little hard information. Textbooks about RFI/EMC exist but are usually out of print and difficult to find (luckily, some can be [http://books.google.com/books/about/The_technician_s_EMI_handbook.html?id=PImqHW34Bt0C found] on Google Books). Reading them usually requires some formal education in electronics, including radio propagation and advanced math.
Japan has a similar regulation, also requiring separate testing.
 
Again, some other countries have their own EMC regulations, test conditions, and certifications. Japan has a similar [http://www.ce-mag.com/99ARG/Gubisch145.html regulation], also requiring separate testing, but only by a VCCI-registered test lab. I've heard that in Russia, all that's needed to get a [http://www.sgs.com/safety_v2/gost_r_mark.htm GOST-R mark] is a suitable bribe. You can test for it outside Russia, then export to Russia with few problems. But a bribe can be far cheaper and easier to do, provided you know who the actual bribe must go to. Similar things happen in countries like Brazil, India and China. Italy is long notorious for having problems with corruption among its customs officials, even for small shipments of commercial goods. And parts of Africa, like Nigeria or Zimbabwe, are an insane nightmare to export to.
 
So far, modular synthesizers have been too low in production to attract the attention of EMC regulators, in the US, in Japan or in the EU. And the "kit" aspect of a modular synth might serve to invalidate EMC regulations, similarly to electrical-safety standards. However, I have not been able to find court cases that will confirm this. The fact that most modules were analog (containing no RFI-generating microprocessors or other such circuits) in the past has been an advantage, since Part 15 simply doesn't apply to them. With the appearance of DSP-based or microprocessor-based modules in recent years, that could change. A legal challenge to the modular synth has not occurred to date.
Line 49:
 
All well and fine--until 2006, when the EU promulgated the [http://en.wikipedia.org/wiki/Restriction_of_Hazardous_Substances_Directive RoHS] regulation. along with banning cadmium plating, hexavalent chromium (also used to plate parts), and certain brominated chemicals that are used to make plastics more fire-resistant, it banned lead solder. Luckily there are a number of exemptions that any maker of modular synthesizers can take, thus avoiding RoHS problems when exporting to Europe. But the maker still has to include an RoHS exemption sheet with every shipment to an EU country. Companies that mass-produce consumer goods, like cellphones, personal computers, appliances and the like, have no recourse but to use lead-free solder.
 
There are attempts being made by legislators in other countries to outlaw the RoHS substances. The US Congress has considered it, though with no action to date. The State of California will probably outlaw lead solder soon, with other states likely to follow.
 
60-40 solder is still less costly than any of the more exotic solders being used, and although long-term reliability is still a subject of much argument, 60-40 solder has a proven reliability track record going back to the 1920s. It is not unusual to find an 80-year-old radio whose soldered joints are still solid, shiny, and functional. Since PCs and cellphones tend to be disposed of or die after two years or less, tin whiskering may not be an issue. Only the future will tell.
Anonymous user