Stripboard: Difference between revisions

m
no edit summary
(Created page with "thumb|right|250px|Stripboard and spot face cutter. '''Stripboard''' (sometimes called '''veroboard''') is useful fo...")
 
mNo edit summary
Line 1:
[[File:Spot face cutter and stripboard by Rain Rabbit.jpg|thumb|right|250px|Stripboard and spot face cutter.]]
'''Stripboard''' (sometimes called '''veroboard''') is useful for prototyping. The circuit layout is based on a grid making it straightforward to design for. and theThe abundance of connection points make it easy to alter after assembly.
 
== How it works ==
Line 8:
=== Warnings ===
[[File:Arduino clone components by Nathan Chantrell.jpg|thumb|right|250px|Components for an Arduino clone, note the stripboard tracks are already cut.]]
[[FR-2|SRBP]] (FR2) with many perforations can be brittle and break under pressure. The copper strips are generally untinned and can tarnish making them difficult to solder. With repeated soldering the strips will delaminate from the board. When breaking copper strips it is easy to leave some fine strand of copper still making a connection. Adjacent strips have high [[Capacitor|capacitance]] which can result in unwanted [[crosstalk|coupling]]. CanIt pickis upsusceptible to noise fromdue to insufficient ground connections.<ref name="eecg">''[http://www2.ee.ic.ac.uk/t.clarke/projects/Resources/Electronic%20Construction%20Techniques.pdf Second Year Electronic Laboratory Electronics Construction Guidelines]'' by Tom Clarke, Department of Electrical and Electronic Engineering, Imperial College, 2005</ref>
 
== Planning the layout ==
[[File:Assembled stripboard Arduino clone by Nathan Chantrell.jpg|thumb|right|250px|Assembled stripboard Arduino clone. Wire link colors indicate +5V and ground.]]
Before prototyping the circuit check the schematic by building it on a solderless breadboard. Then plan the layout of the stripboard on ''squared ruled paper''. Use the the horizontal lines to indicate the copper strips, the intersections of the lines the holes. Try to run the wire links at at right angles to the strips. Make the layout clearer by inking overin the conductors used. Draw a dot at connections and an x (in a different colour) where strips are cut, e.g. between IC pins. Allow for the size of the components and where their leads enter the board by counting off the number of holes on the stripboard. For example a 1/4 W resistor needs at least four holes when horizontal and two if mounted vertically. Power connectors, pin headers, solder pins and terminal posts providing off-board connections and test points can be indicated with small circles. This will help ascertain the size of board required,. alsoAlso allow for mounting the board into its enclosure.<ref name="eafc"/>
 
=== Hints ===
For good performance keep signal strips as short as possible, to reduce the radiation and pickup. Keep input and output strips away from each other, separate if necessary with a ground strip connected to ground. For ground connect many strips together to approximate a ground plane.<ref name="eecg"/>
 
== Construction ==
Cut the board to size with a junior hacksaw and lightly file the edges and corners to remove any sharpness. Cut the strips with a 4 mm drill bit, a craft knife or ideally a ''spot face cutter''. Use a magnifier to visually inspect the cuts for residual connections, or check the discontinuity with a multimeter. Try not to touch the copper with bare fingers. If it's tarnished it won't solder easily. Use fine emery paper to clean the oxide off.<ref name="eafc"/>
 
First solder the link wires. Strip and solder one end, measure and cut the wire to length, strip the other end, bend and insert it in the other hole and solder, trim both ends. Then fit any terminal pins and sockets, these will help with orientation when fitting the rest of the components. For sockets first solder two diagonal pins then check the socket is fitting flush to the board before soldering the rest of the pins. Solder the rest of the components, starting with the lowest or smallest and working up in size, lastly insert the ICs into their sockets. As you go along double check component values, that polarised components are correctly oriented and that links and leads go to the appropriate copper strips. Finally do a visual check for badly cut strips, poor solder connections and short-circuits between adjacent strips. Use solder braid to remove solder. Consider using terminal pins or solder posts to provide off-board connections and test points, these are less fragile than hookup wire soldered directly to the board. Test points make testing simpler. Update your layout if you make changes.<ref name="eafc"/>