CGS sub-oscillator/harmonic sequencer: Difference between revisions

Jump to navigation Jump to search
Content added Content deleted
No edit summary
No edit summary
Line 5: Line 5:
Another circuit he used at the time to "fatten up" the sound of his single oscillator synth was a "harmony generator", achieved by running a 4017 decade counter chip wired to divide by three or six.
Another circuit he used at the time to "fatten up" the sound of his single oscillator synth was a "harmony generator", achieved by running a 4017 decade counter chip wired to divide by three or six.


This design combines both of these circuits, giving a two channel sub oscillator, which allows each channel to be used independantly, or driven from the same oscillator, but set to different intervals. As a bonus, both channels can be multiplied or "digitally ring modulated" giving even more effects.
This design combines both of these circuits, giving a two channel sub oscillator, which allows each channel to be used independently, or driven from the same oscillator, but set to different intervals. As a bonus, both channels can be multiplied or "digitally ring modulated" giving even more effects.


== Some ideas on how to use this module ==
== Some ideas on how to use this module ==
Fed by two [[VCO]]s it can operate as two independant sub-oscillators, with optional ring modulated outputs.
Fed by two [[VCO]]s it can operate as two independent sub-oscillators, with optional ring modulated outputs.


Running both sub-oscillators from the same VCO, tuned to a fifth over the base note you require, and with the prescaller set to divide by 3, it is possible to create harmonies. An unusual effect here is that the ring modulated outputs give a fatter chord-like sound that remains indepenant of minor or major scales, allowing "one finger chords" which can be handy when used with a related sequencer driven bass line.
Running both sub-oscillators from the same VCO, tuned to a fifth over the base note you require, and with the prescaler set to divide by 3, it is possible to create harmonies. An unusual effect here is that the ring modulated outputs give a fatter chord-like sound that remains indepenant of minor or major scales, allowing "one finger chords" which can be handy when used with a related sequencer driven bass line.


Careful mixing of the ring modulated output with one channel's divided output results in some interesting sounds, especially if one of the channels is being driven from a low frequency oscillator. Running like this, it could be considered to be a "harmonic sequencer"
Careful mixing of the ring modulated output with one channel's divided output results in some interesting sounds, especially if one of the channels is being driven from a low frequency oscillator. Running like this, it could be considered to be a "harmonic sequencer"
Line 18: Line 18:
=== Notes ===
=== Notes ===
* When using the sub oscillator, try feeding an audio signal into the "a" input, and a low frequency signal into the "b" input, then mix the "a" channel and multiplied signals together. Due to the action of the EXOR gates, the output of the "a" channel can be gated partially to fully on and off, giving some interesting tonal sequences.
* When using the sub oscillator, try feeding an audio signal into the "a" input, and a low frequency signal into the "b" input, then mix the "a" channel and multiplied signals together. Due to the action of the EXOR gates, the output of the "a" channel can be gated partially to fully on and off, giving some interesting tonal sequences.
* Asymetrical input waveshapes will not drive the input multiplier properly. Nothing says you can't exploit this either.
* Asymmetrical input waveshapes will not drive the input multiplier properly. Nothing says you can't exploit this either.


== Construction ==
== Construction ==
Line 25: Line 25:
* The 22k resistor in the mixer section marked * sets the overall gain of the mixer. Omit it if wiring in a master level pot. (This resistor is shown as 47k on the current circuit diagram.) See [[CGS DC mixer|CGS04 DC mixer]] for more information as the mixer portion of this circuit is essentially the same.
* The 22k resistor in the mixer section marked * sets the overall gain of the mixer. Omit it if wiring in a master level pot. (This resistor is shown as 47k on the current circuit diagram.) See [[CGS DC mixer|CGS04 DC mixer]] for more information as the mixer portion of this circuit is essentially the same.
=== Alternate layout ===
=== Alternate layout ===
Having had the prototype in my synthesiser for some time now, a second layout became obvious. Instead of having pots for both the B channel and the multiplier outputs, I used a 4 pole 2 position switch to select between the B channel and the multiplier outputs, saving me a lot of panel space. The x2 output was sacrificed, and the rotary switch to select the prescale was replaced by an SPDT switch for the bypass function, and a SPDT center off switch was used to select between divide by 3, 7 and 5. 7 is hard wired as the default on the PCB, so no connection is needed to the switch.
Having had the prototype in my synthesizer for some time now, a second layout became obvious. Instead of having pots for both the B channel and the multiplier outputs, I used a 4 pole 2 position switch to select between the B channel and the multiplier outputs, saving me a lot of panel space. The x2 output was sacrificed, and the rotary switch to select the prescale was replaced by an SPDT switch for the bypass function, and a SPDT center off switch was used to select between divide by 3, 7 and 5. 7 is hard wired as the default on the PCB, so no connection is needed to the switch.
*[[:File:cgs_suboscillator.gif|200 DPI B&W printable panel artwork version 1]]
*[[:File:cgs_suboscillator.gif|200 DPI B&W printable panel artwork version 1]]
*[[:File:cgs_suboscillator2.gif|200 DPI B&W printable panel artwork version 2]]
*[[:File:cgs_suboscillator2.gif|200 DPI B&W printable panel artwork version 2]]
Line 40: Line 40:
The circuit can best be understood if viewed in smaller sections, which is why I've broken the circuit diagram up into parts.
The circuit can best be understood if viewed in smaller sections, which is why I've broken the circuit diagram up into parts.


The first part simply takes the input signal (preferrably symetrical, such as a square, triangle or sine wave), squares it up, and multiplies it by two using a fairly conventional square wave frequency doubler made from a few NAND gates. Both normal and inverted signals are brought out to PCB pads, and the normal signal is fed on to the prescaler or dividers. There are two of these input stages on the PCB, one per channel.
The first part simply takes the input signal (preferably symmetrical, such as a square, triangle or sine wave), squares it up, and multiplies it by two using a fairly conventional square wave frequency doubler made from a few NAND gates. Both normal and inverted signals are brought out to PCB pads, and the normal signal is fed on to the prescaler or dividers. There are two of these input stages on the PCB, one per channel.


The second diagram covers the prescaler, giving effective frequency divisions of 1, 1.5, 2.5 and 3.5 when the frequency doubler in the input stage is taken into account. If a double pole switch is used as shown, it is possible to route the frequency doubled signal straight through to the divider as well. Of note is that the signal is being fed into the clock enable line, while the clock is held high. The clock enable line is simply inverted then AND gated with the signal from the clock pin within the 4017. Grounding the clock enable line and feeding the clock signal into the clock pin would have worked equally well.
The second diagram covers the prescaler, giving effective frequency divisions of 1, 1.5, 2.5 and 3.5 when the frequency doubler in the input stage is taken into account. If a double pole switch is used as shown, it is possible to route the frequency doubled signal straight through to the divider as well. Of note is that the signal is being fed into the clock enable line, while the clock is held high. The clock enable line is simply inverted then AND gated with the signal from the clock pin within the 4017. Grounding the clock enable line and feeding the clock signal into the clock pin would have worked equally well.
Line 48: Line 48:
The fourth diagram simply shows how the multipliers are wired to the two dividers. The outputs are marked M1-4 and can be fed into the mixer as per the example in the mixer diagram, much like any of the signals from the dividers. These four EXOR gates do the digital "ring modulation", with each gate wired so that it is feeding from the same numbered divider stage from each channel.
The fourth diagram simply shows how the multipliers are wired to the two dividers. The outputs are marked M1-4 and can be fed into the mixer as per the example in the mixer diagram, much like any of the signals from the dividers. These four EXOR gates do the digital "ring modulation", with each gate wired so that it is feeding from the same numbered divider stage from each channel.


The fifth diagram shows the mixer. It also gives an example of how the inputs are fed through a resister then a pot and into the mixer. My prototype used thirteen pots. There is no hard and fast rule to what is fed into the mixer. That much is up to the individual's needs. In my case channel "a" was the divider chain without the prescaler, and the one with the prescaler was channel "b". From channel "a" I fed the squared input, /2, /4 and /8 signals, being the pads marked 1 to 4 on the divider into the mixer. From channel "b" I fed the frequency doubled input (see note below) the squared input, /2, /4 and /8 signals into the mixer. I also fed all four of the multipler outputs (M1-4) into the mixer.
The fifth diagram shows the mixer. It also gives an example of how the inputs are fed through a resister then a pot and into the mixer. My prototype used thirteen pots. There is no hard and fast rule to what is fed into the mixer. That much is up to the individual's needs. In my case channel "a" was the divider chain without the prescaler, and the one with the prescaler was channel "b". From channel "a" I fed the squared input, /2, /4 and /8 signals, being the pads marked 1 to 4 on the divider into the mixer. From channel "b" I fed the frequency doubled input (see note below) the squared input, /2, /4 and /8 signals into the mixer. I also fed all four of the multiplier outputs (M1-4) into the mixer.


[[File:cgs_wire_cgs01_subosc_r2.gif|thumb|center|600px]][[File:cgs_wire_cgs01_subosc_r2a.gif|thumb|center|464px|Examples of how to wire the sub-oscillator. The exact position of the terminals on the rotary switch will vary with manufacturer. Wiring for the earlier version of the board is essentially the same, though the pads will be in different locations. Click through for larger views.]]
[[File:cgs_wire_cgs01_subosc_r2.gif|thumb|center|600px]][[File:cgs_wire_cgs01_subosc_r2a.gif|thumb|center|464px|Examples of how to wire the sub-oscillator. The exact position of the terminals on the rotary switch will vary with manufacturer. Wiring for the earlier version of the board is essentially the same, though the pads will be in different locations. Click through for larger views.]]
Line 64: Line 64:
| 1n5||align=right|4
| 1n5||align=right|4
|-
|-
| 100n||align=right|9
| 100nF||align=right|9
|-
|-
| 1uF 25V||align=right|2
| 1uF 25V||align=right|2
Line 98: Line 98:
! colspan="2" align=center|Misc
! colspan="2" align=center|Misc
|-
|-
| Ferite beads||align=right|2
| Ferrite beads||align=right|2
|-
|-
| Tinned copper wire||align=right|10 cm
| Tinned copper wire||align=right|10 cm