Capacitor codes: Difference between revisions

Jump to navigation Jump to search
Content added Content deleted
No edit summary
 
(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
It's essential to be able to read '''capacitor codes''' in order to correctly recognise the correct part and as the schematic, BOM and component supplier might use pF, nF or µF interchangeably to be able to [[capacitor conversions|convert]] between these.
As small general purpose capacitors values range from a few pF to less than 1 µF the convention arose that whole numbers designate values in picofarads while decimal fractions designates values in microfarads. Any capacitor with a value of 1 µF or above is large enough to be marked with its actual value. A newer way to mark values is with three numbers on the body of the capacitor. The value is in picofarads, the the third digit is a multiplier. So for example 151 indicates a capacitance of 150 pF.<ref>[https://web.archive.org/web/20120814104332/http://www.play-hookey.com:80/dc_theory/capacitor_values.html Reading Capacitance Values] by Ken Bigelow</ref>

== EIA scheme ==
The Electronic Industry Alliance (EIA) has standardised some of the marking schemes.<ref name="ccam"/>

== Leaded ==
On larger capacitors their value is printed on the case or encapsulation. The values of small capacitors are indicated in an alphanumeric code. With older capacitor values were sometimes indicated by a colour code.<ref name="ccam">[https://www.electronics-notes.com/articles/electronic_components/capacitors/capacitor-codes-markings.php Capacitor Codes &amp; Markings], Electronics Notes</ref>

With small general purpose capacitors where values range from a few pF to less than 1 µF the convention arose that whole numbers designate values in picofarads while decimal fractions designates values in microfarads.<ref name="rcv">[https://web.archive.org/web/20120814104332/http://www.play-hookey.com/dc_theory/capacitor_values.html Reading Capacitance Values] by Ken Bigelow</ref>


Often p, n and u are substituted for the decimal point. For example 8p2 for 8.2pF, n51 for 0.51nF or 4u7 for 4.7µF.
Often p, n and u are substituted for the decimal point. For example 8p2 for 8.2pF, n51 for 0.51nF or 4u7 for 4.7µF.

=== Working voltage ===
Where there is space the working voltage is given. For smaller capacitors this needs to be found from the data sheet.<ref name="rcv"/>

=== Polarity ===
Care must be taken to insert polarised capacitors in the correct orientation. The stripe on radial or arrow on axial aluminium electrolytic types indicates the negative lead. On tantalum types a + sign indicates the positive lead.<ref name="rcv"/>

=== Stripe ===
If there is a stripe on a non-polarised capacitor, it might indicate which lead is connected to the outermost foil. To connect the capacitor connect this lead to the lowest impedance (usually the ground) side of the circuit. Many modern capacitors are unmarked, and often when a capacitor does have a stripe, it’s not related to the outside foil marking.<ref>[https://www.nutsvolts.com/magazine/article/finding-the-outside-foil-lead Finding the outside foil lead] by Chris Prioli, Nuts and Volts, Issue 2, 2022, p. 12</ref><ref>[https://e2e.ti.com/blogs_/archives/b/thesignal/posts/pcb-layout-tricks-striped-capacitors-and-more PCB Layout Tricks—striped capacitors and more] by Bruce Trump, The Signal, 11 Dec 2012</ref>

=== Small values ===
For small value capacitors the letter R is used to denote a decimal point.<ref name="ccam"/>


{|
{|
Line 58: Line 78:
| 9R1||9.1||0.0091||0.0000091
| 9R1||9.1||0.0091||0.0000091
|}
|}

{|class="wikitable"
|

{|class="wikitable" style="margin-left: 25px;"
!Code!!Tolerance
|-
| A||±0.05 pF
|-
| B||±0.1 pF
|-
| C||±0.25 pF
|-
| D||±0.5 pF
|-
| E||±0.5%
|-
| F||±1.0% or ±1 pF
|-
| G||±2.0% or ±2 pF
|-
| H||±2.5%
|-
| J||±5.0%
|-
| K||±10%
|-
| L||±15%
|-
| M||±20%
|-
| N||±30%
|-
| P||-0 to +100%
|-
| Q||-10 to +30%
|-
| S||-20 to +50%
|-
| T||-10 to +50%
|-
| U||-10 to +75%
|-
| W||-10 to +100%
|-
| Y||-20 to +5%
|-
| Z||-20 to +80%
|}

|

{|class="wikitable" style="margin-left: 25px;"
!Code!!Volts DC
|-
| 0G||4
|-
| 0L||5.5
|-
| 0J||6.3
|-
| 1A||10
|-
| 1C||16
|-
| 1E||25
|-
| 1V||35
|-
| 1H||50
|-
| 1J||63
|-
| 1K||80
|-
| 2A||100
|-
| 2Q||110
|-
| 2B||125
|-
| 2C||160
|-
| 2Z||180
|-
| 2D||200
|-
| 2P||220
|-
| 2E||250
|-
| 2F||315
|-
| 2V||350
|-
| 2G||400
|-
| 2W||450
|}

|}

=== Abbreviated marking codes ===
A newer way to mark values is with three numbers on the body of the capacitor with the value in picofarads. The first two digits are the significant figures and the third the multiplier (i.e. number of zeros). So for example 151 indicates a capacitance of 150 pF.<ref name="rcv"/>

{|
|- style="vertical-align:top;"
|

{|class="wikitable"
!EIA code!!pF!!nF!!µF
!EIA code!!pF!!nF!!µF
|-
|-
Line 109: Line 237:
| 910||91||0.091||0.000091
| 910||91||0.091||0.000091
|}
|}

{|class="wikitable"
|

{|class="wikitable" style="margin-left: 25px;"
!EIA code!!pF!!nF!!µF
!EIA code!!pF!!nF!!µF
|-
|-
Line 160: Line 291:
| 911||910||0.91||0.00091
| 911||910||0.91||0.00091
|}
|}

{|class="wikitable"
|

{|class="wikitable" style="margin-left: 25px;"
!EIA code!!pF!!nF!!µF
!EIA code!!pF!!nF!!µF
|-
|-
Line 211: Line 345:
| 912||9,100||9.1||0.0091
| 912||9,100||9.1||0.0091
|}
|}

{|class="wikitable"
|

{|class="wikitable" style="margin-left: 25px;"
!EIA code!!pF!!nF!!µF
!EIA code!!pF!!nF!!µF
|-
|-
Line 262: Line 399:
| 913||91,000||91||0.091
| 913||91,000||91||0.091
|}
|}

{|class="wikitable"
|

{|class="wikitable" style="margin-left: 25px;"
!EIA code!!pF!!nF!!µF
!EIA code!!pF!!nF!!µF
|-
|-
Line 314: Line 454:
|}
|}


|

{|class="wikitable" style="margin-left: 25px;"
!Code!!Tolerance
|-
| A||±0.05 pF
|-
| B||±0.1 pF
|-
| C||±0.25 pF
|-
| D||±0.5 pF
|-
| E||±0.5%
|-
| F||±1.0% or ±1 pF
|-
| G||±2.0% or ±2 pF
|-
| H||±2.5%
|-
| J||±5.0%
|-
| K||±10%
|-
| L||±15%
|-
| M||±20%
|-
| N||±30%
|-
| P||-0 to +100%
|-
| Q||-10 to +30%
|-
| S||-20 to +50%
|-
| T||-10 to +50%
|-
| U||-10 to +75%
|-
| W||-10 to +100%
|-
| Y||-20 to +5%
|-
| Z||-20 to +80%
|}
|}


=== Temperature coefficient ===
|

{|class="wikitable" style="margin-left: 25px;"
!Code!!Volts DC
|-
| 0G||4
|-
| 0L||5.5
|-
| 0J||6.3
|-
| 1A||10
|-
| 1C||16
|-
| 1E||25
|-
| 1V||35
|-
| 1H||50
|-
| 1J||63
|-
| 1K||80
|-
| 2A||100
|-
| 2Q||110
|-
| 2B||125
|-
| 2C||160
|-
| 2Z||180
|-
| 2D||200
|-
| 2P||220
|-
| 2E||250
|-
| 2F||315
|-
| 2V||350
|-
| 2G||400
|-
| 2W||450
|}

|}


{|
{|
Line 481: Line 525:


|}
|}

== SMD ==
...


== References ==
== References ==

Latest revision as of 13:51, 18 September 2023

It's essential to be able to read capacitor codes in order to correctly recognise the correct part and as the schematic, BOM and component supplier might use pF, nF or µF interchangeably to be able to convert between these.

EIA scheme

The Electronic Industry Alliance (EIA) has standardised some of the marking schemes.[1]

Leaded

On larger capacitors their value is printed on the case or encapsulation. The values of small capacitors are indicated in an alphanumeric code. With older capacitor values were sometimes indicated by a colour code.[1]

With small general purpose capacitors where values range from a few pF to less than 1 µF the convention arose that whole numbers designate values in picofarads while decimal fractions designates values in microfarads.[2]

Often p, n and u are substituted for the decimal point. For example 8p2 for 8.2pF, n51 for 0.51nF or 4u7 for 4.7µF.

Working voltage

Where there is space the working voltage is given. For smaller capacitors this needs to be found from the data sheet.[2]

Polarity

Care must be taken to insert polarised capacitors in the correct orientation. The stripe on radial or arrow on axial aluminium electrolytic types indicates the negative lead. On tantalum types a + sign indicates the positive lead.[2]

Stripe

If there is a stripe on a non-polarised capacitor, it might indicate which lead is connected to the outermost foil. To connect the capacitor connect this lead to the lowest impedance (usually the ground) side of the circuit. Many modern capacitors are unmarked, and often when a capacitor does have a stripe, it’s not related to the outside foil marking.[3][4]

Small values

For small value capacitors the letter R is used to denote a decimal point.[1]

EIA code pF nF µF
1R0 1 0.001 0.000001
1R1 1.1 0.0011 0.0000011
1R2 1.2 0.0012 0.0000012
1R3 1.3 0.0013 0.0000013
1R5 1.5 0.0015 0.0000015
1R6 1.6 0.0016 0.0000016
1R8 1.8 0.0018 0.0000018
2R0 2 0.002 0.000002
2R2 2.2 0.0022 0.0000022
2R4 2.4 0.0024 0.0000024
2R7 2.7 0.0027 0.0000027
3R0 3 0.003 0.000003
3R3 3.3 0.0033 0.0000033
3R6 3.6 0.0036 0.0000036
3R9 3.9 0.0039 0.0000039
4R3 4.3 0.0043 0.0000043
4R7 4.7 0.0047 0.0000047
5R1 5.1 0.0051 0.0000051
5R6 5.6 0.0056 0.0000056
6R2 6.2 0.0062 0.0000062
6R8 6.8 0.0068 0.0000068
7R5 7.5 0.0075 0.0000075
8R2 8.2 0.0082 0.0000082
9R1 9.1 0.0091 0.0000091
Code Tolerance
A ±0.05 pF
B ±0.1 pF
C ±0.25 pF
D ±0.5 pF
E ±0.5%
F ±1.0% or ±1 pF
G ±2.0% or ±2 pF
H ±2.5%
J ±5.0%
K ±10%
L ±15%
M ±20%
N ±30%
P -0 to +100%
Q -10 to +30%
S -20 to +50%
T -10 to +50%
U -10 to +75%
W -10 to +100%
Y -20 to +5%
Z -20 to +80%
Code Volts DC
0G 4
0L 5.5
0J 6.3
1A 10
1C 16
1E 25
1V 35
1H 50
1J 63
1K 80
2A 100
2Q 110
2B 125
2C 160
2Z 180
2D 200
2P 220
2E 250
2F 315
2V 350
2G 400
2W 450

Abbreviated marking codes

A newer way to mark values is with three numbers on the body of the capacitor with the value in picofarads. The first two digits are the significant figures and the third the multiplier (i.e. number of zeros). So for example 151 indicates a capacitance of 150 pF.[2]

EIA code pF nF µF
100 10 0.01 0.00001
110 11 0.011 0.000011
120 12 0.012 0.000012
130 13 0.013 0.000013
150 15 0.015 0.000015
160 16 0.016 0.000016
180 18 0.018 0.000018
200 20 0.02 0.00002
220 22 0.022 0.000022
240 24 0.024 0.000024
270 27 0.027 0.000027
300 30 0.03 0.00003
330 33 0.033 0.000033
360 36 0.036 0.000036
390 39 0.039 0.000039
430 43 0.043 0.000043
470 47 0.047 0.000047
510 51 0.051 0.000051
560 56 0.056 0.000056
620 62 0.062 0.000062
680 68 0.068 0.000068
750 75 0.075 0.000075
820 82 0.082 0.000082
910 91 0.091 0.000091
EIA code pF nF µF
101 100 0.1 0.0001
111 110 0.11 0.00011
121 120 0.12 0.00012
131 130 0.13 0.00013
151 150 0.15 0.00015
161 160 0.16 0.00016
181 180 0.18 0.00018
201 200 0.2 0.0002
221 220 0.22 0.00022
241 240 0.24 0.00024
271 270 0.27 0.00027
301 300 0.3 0.0003
331 330 0.33 0.00033
361 360 0.36 0.00036
391 390 0.39 0.00039
431 430 0.43 0.00043
471 470 0.47 0.00047
511 510 0.51 0.00051
561 560 0.56 0.00056
621 620 0.62 0.00062
681 680 0.68 0.00068
751 750 0.75 0.00075
821 820 0.82 0.00082
911 910 0.91 0.00091
EIA code pF nF µF
102 1,000 1 0.001
112 1,100 1.1 0.0011
122 1,200 1.2 0.0012
132 1,300 1.3 0.0013
152 1,500 1.5 0.0015
162 1,600 1.6 0.0016
182 1,800 1.8 0.0018
202 2,000 2 0.002
222 2,200 2.2 0.0022
242 2,400 2.4 0.0024
272 2,700 2.7 0.0027
302 3,000 3 0.003
332 3,300 3.3 0.0033
362 3,600 3.6 0.0036
392 3,900 3.9 0.0039
432 4,300 4.3 0.0043
472 4,700 4.7 0.0047
512 5,100 5.1 0.0051
562 5,600 5.6 0.0056
622 6,200 6.2 0.0062
682 6,800 6.8 0.0068
752 7,500 7.5 0.0075
822 8,200 8.2 0.0082
912 9,100 9.1 0.0091
EIA code pF nF µF
103 10,000 10 0.01
113 11,000 11 0.011
123 12,000 12 0.012
133 13,000 13 0.013
153 15,000 15 0.015
163 16,000 16 0.016
183 18,000 18 0.018
203 20,000 20 0.02
223 22,000 22 0.022
243 24,000 24 0.024
273 27,000 27 0.027
303 30,000 30 0.03
333 33,000 33 0.033
363 36,000 36 0.036
393 39,000 39 0.039
433 43,000 43 0.043
473 47,000 47 0.047
513 51,000 51 0.051
563 56,000 56 0.056
623 62,000 62 0.062
683 68,000 68 0.068
753 75,000 75 0.075
823 82,000 82 0.082
913 91,000 91 0.091
EIA code pF nF µF
104 100,000 100 0.1
114 110,000 110 0.11
124 120,000 120 0.12
134 130,000 130 0.13
154 150,000 150 0.15
164 160,000 160 0.16
184 180,000 180 0.18
204 200,000 200 0.2
224 220,000 220 0.22
244 240,000 240 0.24
274 270,000 270 0.27
304 300,000 300 0.3
334 330,000 330 0.33
364 360,000 360 0.36
394 390,000 390 0.39
434 430,000 430 0.43
474 470,000 470 0.47
514 510,000 510 0.51
564 560,000 560 0.56
624 620,000 620 0.62
684 680,000 680 0.68
754 750,000 750 0.75
824 820,000 820 0.82
914 910,000 910 0.91

Temperature coefficient

Temp. coefficient (ppm/ºC) Colour code Industrial code EIA code
100 Red/violet P100
±0 Black NPO COG
-33 Brown N033 S1G
-75 Red N075 U1G
-150 Orange N150 P2G
-220 Yellow N220 R2G
-330 Green N330 S2H
-470 Blue N470 T2H
-750 Violet N750 U2J
-1500 Orange/orange N1500 P3K
-2200 Yeltow/orange N2200 R3L
-3300 Green/orange N3300
-4700 Blue/orange N4700
1st figure 2nd figure 3rd figure
Min. temp. Max. temp. Max. capacitance change over temp. range
X -55ºC 2 +45°C A ±1%
Y -30ºC 4 +65°C B ±1.5%
Z +10°C 5 +85ºC C ±2.2%
6 +105°C D ±3.3%
7 +125°C E ±4.7%
F ±7.5%
P ±10%
R ±15%
S ±22%
T -33 to +22%
U -58 to +22%
V -82 to +22%

SMD

...

References

  1. ^ a b c Capacitor Codes & Markings, Electronics Notes
  2. ^ a b c d Reading Capacitance Values by Ken Bigelow
  3. ^ Finding the outside foil lead by Chris Prioli, Nuts and Volts, Issue 2, 2022, p. 12
  4. ^ PCB Layout Tricks—striped capacitors and more by Bruce Trump, The Signal, 11 Dec 2012