User:Rob Kam/sandbox: Difference between revisions

Jump to navigation Jump to search
Content added Content deleted
Line 101: Line 101:
\draw[thick] (10.95,0,0) to[out=-30,in=180] (12,1,-1);
\draw[thick] (10.95,0,0) to[out=-30,in=180] (12,1,-1);
\end{tikzpicture}
\end{tikzpicture}
\end{document}
</m>

<m>
\documentclass{article}
\usepackage[symbols]{circuitikz}
\usepackage{tikz}
\usepackage{verbatim}

\begin{comment}
:Title: Circuitikz
:Grid: 2x2


CircuiTikz_ is a set of LaTeX macros designed to make it easy to draw electrical networks in scientific publications. It provides a convenient syntax based on to-paths to place the various components.
The examples below are from the `CircuiTikz examples page`_. The author of CircuiTikz_ is `Massimo Readelli`_.

To run the examples you need to `download and install`_ the CircuiTikz_ files first.

*Note*. The circuits library available in the CVS version of PGF is inspired by CircuiTikz_.

.. _CircuiTikz: http://home.dei.polimi.it/mredaelli/circuitikz/index.html
.. _CircuiTikz examples page: http://home.dei.polimi.it/mredaelli/circuitikz/examples.html
.. _download and install: http://home.dei.polimi.it/mredaelli/circuitikz/download.html
.. _Massimo Readelli: http://home.dei.polimi.it/mredaelli/about.html
\end{comment}

\begin{document}

\begin{circuitikz} \draw
(0,0) to[C, l=$10\micro\farad$] (0,2) -- (0,3)
to[R, l=$2.2\kilo\ohm$] (4,3) -- (4,2)
to[L, l=$12\milli\henry$, i=$i_1$] (4,0) -- (0,0)
(4,2) to[D*, *-*] (2,0) to [D*, -*] (0,2)
to[R, l=$1\kilo\ohm$] (2,2) to[cV, v=$0.3\kilo\ohm i_1$] (4,2)
(2,0) to[I, i=$1\milli\ampere$:15, -*] (2,2)
;
\end{circuitikz}

\begin{circuitikz} \draw
(0,0) node[ground] {}
to[V, v=$e(t)$, *-*] (0,2) to[C, l=$4\nano\farad$] (2,2)
to [R, l=$\frac{1}{4}\kilo\ohm$, *-*] (2,0)
(2,2) to[R, l=$1\kilo\ohm$] (4,2)
to[C, l=$2\nano\farad$:-90, *-*] (4,0)
(5,0) to[I, i=$a(t)$:-90, -*] (5,2) -- (4,2)
(0,0) -- (5,0)
(0,2) -- (0,3) to[L, l=$2\milli\henry$] (5,3) -- (5,2)

{[anchor=south east] (0,2) node {1} (2,2) node {2} (4,2) node {3}}
;\end{circuitikz}

\begin{circuitikz} \draw
(0,0) node[anchor=east]{B}
to[short, o-*] (1,0)
to[R, l=$20\ohm$, *-*] (1,2)
to [R, v=$v_x$, l=$10\ohm$] (3,2)
to[short] (4,2) to[cI, i=$\frac{\siemens}{5}v_x$, *-*] (4,0)
to[short] (3,0) to[R, l=$5\ohm$, *-*] (3,2)
(3,0) -- (1,0)
(1,2) to[short, *-o] (0,2)
node[anchor=east]{A}
;\end{circuitikz}

\begin{circuitikz} \draw
(0,2) to[I, i=$1\milli\ampere$] (2,2)
to [R, l=$2\kilo\ohm$:-90, *-*] (0,0)
to [R, l=$2\kilo\ohm$] (2,0)
to[V, v=$2\volt$:-90] (2,2)
to[cspst, l=$t_0$] (4,2) -- (4,1.5)
to [generic, l=1, i=$i_1$, v=$v_1$] (4,-.5) -- (4,-1)
(0,2) -- (0,-1) to[V, v=$4\volt$] (2,-1)
to [R, l=$1\kilo\ohm$] (4,-1);

\begin{scope}[xshift=7.5cm, yshift=.5cm]
\draw [->] (-2,0)--(2.5,0) node[anchor=west] {$v_1 [\volt]$};
\draw [->] (0,-2)--(0,2) node[anchor=west] {$i_1 [\milli\ampere]$} ;
\draw (-1,0) node[anchor=north] {-2} (1,0) node[anchor=south] {2}
(0,1) node[anchor=west] {4} (0,-1) node[anchor=east] {-4} (2,0)
node[anchor=north west] {4} (-1.5,0) node[anchor=south east] {-3};
\draw [thick]
(-2,-1) -- (-1,1) -- (1,-1) -- (2,0) -- (2.5,.5);
\draw [dotted]
(-1,1) -- (-1,0) (1,-1) -- (1,0) (-1,1) -- (0,1) (1,-1) -- (0,-1);
\end{scope}
\end{circuitikz}

\end{document}
\end{document}
</m>
</m>

Revision as of 17:38, 8 April 2013

This is a sandbox of user Rob Kam. It serves as a testing spot and page development space for the user and is not a SDIY wiki article. For a sandbox of your own, follow this link.


LaTeX

<m>
 \operatorname{erfc}(x) =
 \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =
 \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
</m>

<m> % Optical Fiber Polarization Controller % Author: Jimi Oke \documentclass{article} \usepackage{tikz} %%%< \usepackage{verbatim} \usepackage[active,tightpage]{preview} \PreviewEnvironment{tikzpicture} \setlength\PreviewBorder{5pt}% %%%> \begin{comment}

Title: Optical Fiber Polarization Controller
Tags: Foreach; Scopes
Author: Jimi Oke
Slug: polarization-controller

A polarization controller is an optical device for modifying the polarization state of light. This is a simplified 3-D diagram of an optical fiber polarization controller. \end{comment} \begin{document} \begin{tikzpicture}[x={(0.866cm,-0.5cm)},

 y={(0.866cm,0.5cm)}, z={(0cm,1cm)}]

\tikzstyle{paddle}=[very thick, fill=white] \coordinate (O) at (0, 0, 0);

% fiber in \draw[thick] (0,-1.5,0) to[out=30,in=220] (1,0,0);

% first divider \draw[fill=white] (1,-.4,-.5) -- (2,-.4,-.5) -- (2,-.4,.25) --

     (1,-.4,.25) -- (1,-.4,-.5)
     (2,-.4,.25) -- (2,.4,.25) -- (1,.4,.25) -- (1,-.4,.25)
     (2,.4,.25) -- (2,.4,-.5) -- (2,-.4,-.5);

% first paddle \draw[paddle]

     (2,0,0) -- (4,0,0) -- (4,2,0) -- (2,2,0) -- (2,0,0) % first face
     (2,0,0) -- (2,0,-.1)
     (4,0,0) -- (4,0,-.1)
     (2,0,-.1) -- (4,0,-.1) -- (4,2,-.1);

\draw (3,1,0) circle (.94)

     (3,1,0) circle (.9);

% second divider \draw[fill=white] (4,-.4,-.5) -- (5,-.4,-.5) -- (5,-.4,.25) --

     (4,-.4,.25) -- (4,-.4,-.5)
     (5,-.4,.25) -- (5,.4,.25) -- (4,.4,.25) -- (4,-.4,.25)
     (5,.4,.25) -- (5,.4,-.5) -- (5,-.4,-.5);

% second paddle \filldraw[paddle]

    (5,0,0) -- (7,0,0) -- (7,0,2) -- (5,0,2) -- (5,0,0) % first face
    (7,0,0) -- (7,.1,0) -- (7,.1,2) -- (5,.1,2) -- (5,0,2)
    (7,.1,2) -- (7,0,2);

% third divider \draw[fill=white] (7,-.4,-.5) -- (8,-.4,-.5) -- (8,-.4,.25) --

     (7,-.4,.25) -- (7,-.4,-.5)
     (8,-.4,.25) -- (8,.4,.25) -- (7,.4,.25) -- (7,-.4,.25)
     (8,.4,.25) -- (8,.4,-.5) -- (8,-.4,-.5);

% third paddle \filldraw[paddle]

    (8,0,0) -- (10,0,0) -- (10, -1.732,1) -- (8,-1.732,1)
    -- (8,0,0)

(8,-1.732,1) -- (8,-1.732,.9) -- (10,-1.732,.9) -- (10,0,-.1) -- (10,0,0) (10,-1.732,.9) -- (10,-1.732,1);

% fourth divider \draw[fill=white] (10,-.4,-.5) -- (11,-.4,-.5) -- (11,-.4,.25) --

     (10,-.4,.25) -- (10,-.4,-.5)
     (11,-.4,.25) -- (11,.4,.25) -- (10,.4,.25) -- (10,-.4,.25)
     (11,.4,.25) -- (11,.4,-.5) -- (11,-.4,-.5);

\begin{scope}[x={(0.866cm,-0.5cm)},y={(0,1cm)}] \draw (6,0,1) circle (.94)

     (6,0,1) circle (.9);

\end{scope}

\begin{scope}[x={(0.866cm,-0.5cm)},y={(-.73cm,.077cm)}] \draw[fill=white] (9,1) circle (.94)

     (9,1) circle (.9);

\end{scope}

% fiber exit \draw (11,-.05,.05) -- (11,.05,.05) --

    (11,.05,-.05) -- (11,-.05,-.05) -- (11,-.05,.05);

\draw[thick] (10.95,0,0) to[out=-30,in=180] (12,1,-1); \end{tikzpicture} \end{document} </m>

<m> \documentclass{article} \usepackage[symbols]{circuitikz} \usepackage{tikz} \usepackage{verbatim}

\begin{comment}

Title: Circuitikz
Grid: 2x2


CircuiTikz_ is a set of LaTeX macros designed to make it easy to draw electrical networks in scientific publications. It provides a convenient syntax based on to-paths to place the various components. The examples below are from the `CircuiTikz examples page`_. The author of CircuiTikz_ is `Massimo Readelli`_.

To run the examples you need to `download and install`_ the CircuiTikz_ files first.

  • Note*. The circuits library available in the CVS version of PGF is inspired by CircuiTikz_.

.. _CircuiTikz: http://home.dei.polimi.it/mredaelli/circuitikz/index.html .. _CircuiTikz examples page: http://home.dei.polimi.it/mredaelli/circuitikz/examples.html .. _download and install: http://home.dei.polimi.it/mredaelli/circuitikz/download.html .. _Massimo Readelli: http://home.dei.polimi.it/mredaelli/about.html \end{comment}

\begin{document}

\begin{circuitikz} \draw

(0,0) to[C, l=$10\micro\farad$] (0,2) -- (0,3)
 to[R, l=$2.2\kilo\ohm$] (4,3) -- (4,2)
 to[L, l=$12\milli\henry$, i=$i_1$] (4,0) -- (0,0)
(4,2) to[D*, *-*] (2,0) to [D*, -*] (0,2)
 to[R, l=$1\kilo\ohm$] (2,2)   to[cV, v=$0.3\kilo\ohm i_1$] (4,2)
(2,0) to[I, i=$1\milli\ampere$:15, -*] (2,2)

\end{circuitikz}

\begin{circuitikz} \draw

(0,0) node[ground] {}
 to[V, v=$e(t)$, *-*] (0,2) to[C, l=$4\nano\farad$] (2,2)
 to [R, l=$\frac{1}{4}\kilo\ohm$, *-*] (2,0)
(2,2) to[R, l=$1\kilo\ohm$] (4,2)
 to[C, l=$2\nano\farad$:-90, *-*] (4,0)
(5,0) to[I, i=$a(t)$:-90, -*] (5,2) -- (4,2)
(0,0) -- (5,0)
(0,2) -- (0,3) to[L, l=$2\milli\henry$] (5,3) -- (5,2)
{[anchor=south east] (0,2) node {1} (2,2) node {2} (4,2) node {3}}
\end{circuitikz}

\begin{circuitikz} \draw

(0,0) node[anchor=east]{B}
 to[short, o-*] (1,0)
 to[R, l=$20\ohm$, *-*] (1,2)
 to [R, v=$v_x$, l=$10\ohm$] (3,2)
 to[short] (4,2) to[cI, i=$\frac{\siemens}{5}v_x$, *-*] (4,0)
  to[short] (3,0) to[R, l=$5\ohm$, *-*] (3,2)
(3,0) -- (1,0)
(1,2) to[short, *-o] (0,2)
 node[anchor=east]{A}
\end{circuitikz}

\begin{circuitikz} \draw

(0,2) to[I, i=$1\milli\ampere$] (2,2)
 to [R, l=$2\kilo\ohm$:-90, *-*] (0,0)
 to [R, l=$2\kilo\ohm$] (2,0)
 to[V, v=$2\volt$:-90] (2,2)
 to[cspst, l=$t_0$] (4,2) -- (4,1.5)
 to [generic, l=1, i=$i_1$, v=$v_1$] (4,-.5) -- (4,-1)
(0,2) -- (0,-1) to[V, v=$4\volt$] (2,-1)
 to [R, l=$1\kilo\ohm$] (4,-1);
\begin{scope}[xshift=7.5cm, yshift=.5cm]
 \draw [->] (-2,0)--(2.5,0) node[anchor=west] {$v_1 [\volt]$};
 \draw [->] (0,-2)--(0,2) node[anchor=west] {$i_1 [\milli\ampere]$} ;
 \draw (-1,0) node[anchor=north] {-2} (1,0) node[anchor=south] {2}
  (0,1) node[anchor=west] {4} (0,-1) node[anchor=east] {-4} (2,0) 
  node[anchor=north west] {4} (-1.5,0) node[anchor=south east] {-3};
 \draw [thick]
  (-2,-1) -- (-1,1) -- (1,-1) -- (2,0) -- (2.5,.5);
 \draw [dotted]
  (-1,1) -- (-1,0) (1,-1) -- (1,0) (-1,1) -- (0,1) (1,-1) -- (0,-1);
\end{scope}

\end{circuitikz}

\end{document} </m>

CEM synths

Polyphonic?