User:Rob Kam/sandbox: Difference between revisions

Jump to navigation Jump to search
Content added Content deleted
No edit summary
Line 5: Line 5:
*http://en.wikipedia.org/wiki/Wikipedia:WikiProject_Electronics/Programs
*http://en.wikipedia.org/wiki/Wikipedia:WikiProject_Electronics/Programs


<m>
<math>
\operatorname{erfc}(x) =
\operatorname{erfc}(x) =
\frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =
\frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt =
\frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
\frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
</m>
</math>


<m>
<math>
% Optical Fiber Polarization Controller
% Author: Jimi Oke
\documentclass{article}
\usepackage{tikz}
%%%<
\usepackage{verbatim}
\usepackage[active,tightpage]{preview}
\PreviewEnvironment{tikzpicture}
\setlength\PreviewBorder{5pt}%
%%%>
\begin{comment}
:Title: Optical Fiber Polarization Controller
:Tags: Foreach; Scopes
:Author: Jimi Oke
:Slug: polarization-controller

A polarization controller is an optical device for modifying the polarization state of light. This is a simplified 3-D diagram of an optical fiber polarization controller.
\end{comment}
\begin{document}
\begin{tikzpicture}[x={(0.866cm,-0.5cm)},
y={(0.866cm,0.5cm)}, z={(0cm,1cm)}]
\tikzstyle{paddle}=[very thick, fill=white]
\coordinate (O) at (0, 0, 0);

% fiber in
\draw[thick] (0,-1.5,0) to[out=30,in=220] (1,0,0);

% first divider
\draw[fill=white] (1,-.4,-.5) -- (2,-.4,-.5) -- (2,-.4,.25) --
(1,-.4,.25) -- (1,-.4,-.5)
(2,-.4,.25) -- (2,.4,.25) -- (1,.4,.25) -- (1,-.4,.25)
(2,.4,.25) -- (2,.4,-.5) -- (2,-.4,-.5);

% first paddle
\draw[paddle]
(2,0,0) -- (4,0,0) -- (4,2,0) -- (2,2,0) -- (2,0,0) % first face
(2,0,0) -- (2,0,-.1)
(4,0,0) -- (4,0,-.1)
(2,0,-.1) -- (4,0,-.1) -- (4,2,-.1);
\draw (3,1,0) circle (.94)
(3,1,0) circle (.9);

% second divider
\draw[fill=white] (4,-.4,-.5) -- (5,-.4,-.5) -- (5,-.4,.25) --
(4,-.4,.25) -- (4,-.4,-.5)
(5,-.4,.25) -- (5,.4,.25) -- (4,.4,.25) -- (4,-.4,.25)
(5,.4,.25) -- (5,.4,-.5) -- (5,-.4,-.5);

% second paddle
\filldraw[paddle]
(5,0,0) -- (7,0,0) -- (7,0,2) -- (5,0,2) -- (5,0,0) % first face
(7,0,0) -- (7,.1,0) -- (7,.1,2) -- (5,.1,2) -- (5,0,2)
(7,.1,2) -- (7,0,2);

% third divider
\draw[fill=white] (7,-.4,-.5) -- (8,-.4,-.5) -- (8,-.4,.25) --
(7,-.4,.25) -- (7,-.4,-.5)
(8,-.4,.25) -- (8,.4,.25) -- (7,.4,.25) -- (7,-.4,.25)
(8,.4,.25) -- (8,.4,-.5) -- (8,-.4,-.5);

% third paddle
\filldraw[paddle]
(8,0,0) -- (10,0,0) -- (10, -1.732,1) -- (8,-1.732,1)
-- (8,0,0)
(8,-1.732,1) -- (8,-1.732,.9) -- (10,-1.732,.9) -- (10,0,-.1)
-- (10,0,0)
(10,-1.732,.9) -- (10,-1.732,1);

% fourth divider
\draw[fill=white] (10,-.4,-.5) -- (11,-.4,-.5) -- (11,-.4,.25) --
(10,-.4,.25) -- (10,-.4,-.5)
(11,-.4,.25) -- (11,.4,.25) -- (10,.4,.25) -- (10,-.4,.25)
(11,.4,.25) -- (11,.4,-.5) -- (11,-.4,-.5);

\begin{scope}[x={(0.866cm,-0.5cm)},y={(0,1cm)}]
\draw (6,0,1) circle (.94)
(6,0,1) circle (.9);
\end{scope}

\begin{scope}[x={(0.866cm,-0.5cm)},y={(-.73cm,.077cm)}]
\draw[fill=white] (9,1) circle (.94)
(9,1) circle (.9);
\end{scope}

% fiber exit
\draw (11,-.05,.05) -- (11,.05,.05) --
(11,.05,-.05) -- (11,-.05,-.05) -- (11,-.05,.05);
\draw[thick] (10.95,0,0) to[out=-30,in=180] (12,1,-1);
\end{tikzpicture}
\end{document}
</m>

<m>
\documentclass{article}
\documentclass{article}
\usepackage[symbols]{circuitikz}
\usepackage[symbols]{circuitikz}
Line 189: Line 96:


\end{document}
\end{document}
</m>
</math>


==CEM synths==
==CEM synths==

Revision as of 20:28, 8 April 2013

This is a sandbox of user Rob Kam. It serves as a testing spot and page development space for the user and is not a SDIY wiki article. For a sandbox of your own, follow this link.


LaTeX


Failed to parse (unknown function "\documentclass"): {\displaystyle \documentclass{article} \usepackage[symbols]{circuitikz} \usepackage{tikz} \usepackage{verbatim} \begin{comment} :Title: Circuitikz :Grid: 2x2 CircuiTikz_ is a set of LaTeX macros designed to make it easy to draw electrical networks in scientific publications. It provides a convenient syntax based on to-paths to place the various components. The examples below are from the `CircuiTikz examples page`_. The author of CircuiTikz_ is `Massimo Readelli`_. To run the examples you need to `download and install`_ the CircuiTikz_ files first. *Note*. The circuits library available in the CVS version of PGF is inspired by CircuiTikz_. .. _CircuiTikz: http://home.dei.polimi.it/mredaelli/circuitikz/index.html .. _CircuiTikz examples page: http://home.dei.polimi.it/mredaelli/circuitikz/examples.html .. _download and install: http://home.dei.polimi.it/mredaelli/circuitikz/download.html .. _Massimo Readelli: http://home.dei.polimi.it/mredaelli/about.html \end{comment} \begin{document} \begin{circuitikz} \draw (0,0) to[C, l=$10\micro\farad$] (0,2) -- (0,3) to[R, l=$2.2\kilo\ohm$] (4,3) -- (4,2) to[L, l=$12\milli\henry$, i=$i_1$] (4,0) -- (0,0) (4,2) to[D*, *-*] (2,0) to [D*, -*] (0,2) to[R, l=$1\kilo\ohm$] (2,2) to[cV, v=$0.3\kilo\ohm i_1$] (4,2) (2,0) to[I, i=$1\milli\ampere$:15, -*] (2,2) ; \end{circuitikz} \begin{circuitikz} \draw (0,0) node[ground] {} to[V, v=$e(t)$, *-*] (0,2) to[C, l=$4\nano\farad$] (2,2) to [R, l=$\frac{1}{4}\kilo\ohm$, *-*] (2,0) (2,2) to[R, l=$1\kilo\ohm$] (4,2) to[C, l=$2\nano\farad$:-90, *-*] (4,0) (5,0) to[I, i=$a(t)$:-90, -*] (5,2) -- (4,2) (0,0) -- (5,0) (0,2) -- (0,3) to[L, l=$2\milli\henry$] (5,3) -- (5,2) {[anchor=south east] (0,2) node {1} (2,2) node {2} (4,2) node {3}} ;\end{circuitikz} \begin{circuitikz} \draw (0,0) node[anchor=east]{B} to[short, o-*] (1,0) to[R, l=$20\ohm$, *-*] (1,2) to [R, v=$v_x$, l=$10\ohm$] (3,2) to[short] (4,2) to[cI, i=$\frac{\siemens}{5}v_x$, *-*] (4,0) to[short] (3,0) to[R, l=$5\ohm$, *-*] (3,2) (3,0) -- (1,0) (1,2) to[short, *-o] (0,2) node[anchor=east]{A} ;\end{circuitikz} \begin{circuitikz} \draw (0,2) to[I, i=$1\milli\ampere$] (2,2) to [R, l=$2\kilo\ohm$:-90, *-*] (0,0) to [R, l=$2\kilo\ohm$] (2,0) to[V, v=$2\volt$:-90] (2,2) to[cspst, l=$t_0$] (4,2) -- (4,1.5) to [generic, l=1, i=$i_1$, v=$v_1$] (4,-.5) -- (4,-1) (0,2) -- (0,-1) to[V, v=$4\volt$] (2,-1) to [R, l=$1\kilo\ohm$] (4,-1); \begin{scope}[xshift=7.5cm, yshift=.5cm] \draw [->] (-2,0)--(2.5,0) node[anchor=west] {$v_1 [\volt]$}; \draw [->] (0,-2)--(0,2) node[anchor=west] {$i_1 [\milli\ampere]$} ; \draw (-1,0) node[anchor=north] {-2} (1,0) node[anchor=south] {2} (0,1) node[anchor=west] {4} (0,-1) node[anchor=east] {-4} (2,0) node[anchor=north west] {4} (-1.5,0) node[anchor=south east] {-3}; \draw [thick] (-2,-1) -- (-1,1) -- (1,-1) -- (2,0) -- (2.5,.5); \draw [dotted] (-1,1) -- (-1,0) (1,-1) -- (1,0) (-1,1) -- (0,1) (1,-1) -- (0,-1); \end{scope} \end{circuitikz} \end{document} }

CEM synths

Polyphonic?